module BatBigarray:sig
..end
Additional and modified functions for big arrays.
Large, multi-dimensional, numerical arrays.
This module implements multi-dimensional arrays of integers and floating-point numbers, thereafter referred to as ``big arrays''. The implementation allows efficient sharing of large numerical arrays between OCaml code and C or Fortran numerical libraries.
Concerning the naming conventions, users of this module are encouraged
to do open Bigarray
in their source, then refer to array types and
operations via short dot notation, e.g. Array1.t
or Array2.sub
.
Big arrays support all the OCaml ad-hoc polymorphic operations:
=
, <>
, <=
, etc, as well as Pervasives.compare
);Hash
);Pervasives.output_value
and Pervasives.input_value
, as well as the functions from the
Marshal
module).This module replaces Stdlib's Bigarray module.
Big arrays can contain elements of the following kinds:
Bigarray.float32_elt
),Bigarray.float64_elt
),Bigarray.complex32_elt
),Bigarray.complex64_elt
),Bigarray.int8_signed_elt
or Bigarray.int8_unsigned_elt
),Bigarray.int16_signed_elt
or Bigarray.int16_unsigned_elt
),Bigarray.int_elt
),Bigarray.int32_elt
),Bigarray.int64_elt
),Bigarray.nativeint_elt
).Each element kind is represented at the type level by one of the abstract types defined below.
typefloat32_elt =
Bigarray.float32_elt
=
| |
Float32_elt |
typefloat64_elt =
Bigarray.float64_elt
=
| |
Float64_elt |
typecomplex32_elt =
Bigarray.complex32_elt
=
| |
Complex32_elt |
typecomplex64_elt =
Bigarray.complex64_elt
=
| |
Complex64_elt |
typeint8_signed_elt =
Bigarray.int8_signed_elt
=
| |
Int8_signed_elt |
typeint8_unsigned_elt =
Bigarray.int8_unsigned_elt
=
| |
Int8_unsigned_elt |
typeint16_signed_elt =
Bigarray.int16_signed_elt
=
| |
Int16_signed_elt |
typeint16_unsigned_elt =
Bigarray.int16_unsigned_elt
=
| |
Int16_unsigned_elt |
typeint_elt =
Bigarray.int_elt
=
| |
Int_elt |
typeint32_elt =
Bigarray.int32_elt
=
| |
Int32_elt |
typeint64_elt =
Bigarray.int64_elt
=
| |
Int64_elt |
typenativeint_elt =
Bigarray.nativeint_elt
=
| |
Nativeint_elt |
type('a, 'b)
kind =('a, 'b) Bigarray.kind
=
| |
Float32 : |
| |
Float64 : |
| |
Int8_signed : |
| |
Int8_unsigned : |
| |
Int16_signed : |
| |
Int16_unsigned : |
| |
Int32 : |
| |
Int64 : |
| |
Int : |
| |
Nativeint : |
| |
Complex32 : |
| |
Complex64 : |
| |
Char : |
To each element kind is associated an OCaml type, which is
the type of OCaml values that can be stored in the big array
or read back from it. This type is not necessarily the same
as the type of the array elements proper: for instance,
a big array whose elements are of kind float32_elt
contains
32-bit single precision floats, but reading or writing one of
its elements from OCaml uses the OCaml type float
, which is
64-bit double precision floats.
# 135 "src/batBigarray.mliv"
# 136 "src/batBigarray.mliv"
# 137 "src/batBigarray.mliv"
# 138 "src/batBigarray.mliv"
# 139 "src/batBigarray.mliv"
# 140 "src/batBigarray.mliv"
The GADT type ('a, 'b) kind
captures this association
of an OCaml type 'a
for values read or written in the big array,
and of an element kind 'b
which represents the actual contents
of the big array. Its constructors list all possible associations
of OCaml types with element kinds, and are re-exported below for
backward-compatibility reasons.
Using a generalized algebraic datatype (GADT) here allows to write well-typed polymorphic functions whose return type depend on the argument type, such as:
let zero : type a b. (a, b) kind -> a = function
| Float32 -> 0.0 | Complex32 -> Complex.zero
| Float64 -> 0.0 | Complex64 -> Complex.zero
| Int8_signed -> 0 | Int8_unsigned -> 0
| Int16_signed -> 0 | Int16_unsigned -> 0
| Int32 -> 0l | Int64 -> 0L
| Int -> 0 | Nativeint -> 0n
| Char -> '\000'
val float32 : (float, float32_elt) kind
See Bigarray.char
.
val float64 : (float, float64_elt) kind
See Bigarray.char
.
val complex32 : (Stdlib.Complex.t, complex32_elt) kind
See Bigarray.char
.
val complex64 : (Stdlib.Complex.t, complex64_elt) kind
See Bigarray.char
.
val int8_signed : (int, int8_signed_elt) kind
See Bigarray.char
.
val int8_unsigned : (int, int8_unsigned_elt) kind
See Bigarray.char
.
val int16_signed : (int, int16_signed_elt) kind
See Bigarray.char
.
val int16_unsigned : (int, int16_unsigned_elt) kind
See Bigarray.char
.
val int : (int, int_elt) kind
See Bigarray.char
.
val int32 : (int32, int32_elt) kind
See Bigarray.char
.
val int64 : (int64, int64_elt) kind
See Bigarray.char
.
val nativeint : (nativeint, nativeint_elt) kind
See Bigarray.char
.
val char : (char, int8_unsigned_elt) kind
As shown by the types of the values above,
big arrays of kind float32_elt
and float64_elt
are
accessed using the OCaml type float
. Big arrays of complex kinds
complex32_elt
, complex64_elt
are accessed with the OCaml type
Complex.t
. Big arrays of
integer kinds are accessed using the smallest OCaml integer
type large enough to represent the array elements:
int
for 8- and 16-bit integer bigarrays, as well as OCaml-integer
bigarrays; int32
for 32-bit integer bigarrays; int64
for 64-bit integer bigarrays; and nativeint
for
platform-native integer bigarrays. Finally, big arrays of
kind int8_unsigned_elt
can also be accessed as arrays of
characters instead of arrays of small integers, by using
the kind value char
instead of int8_unsigned
.
val kind_size_in_bytes : ('a, 'b) kind -> int
kind_size_in_bytes k
is the number of bytes used to store
an element of type k
.
typec_layout =
Bigarray.c_layout
=
| |
C_layout_typ |
See Bigarray.fortran_layout
.
typefortran_layout =
Bigarray.fortran_layout
=
| |
Fortran_layout_typ |
To facilitate interoperability with existing C and Fortran code, this library supports two different memory layouts for big arrays, one compatible with the C conventions, the other compatible with the Fortran conventions.
In the C-style layout, array indices start at 0, and
multi-dimensional arrays are laid out in row-major format.
That is, for a two-dimensional array, all elements of
row 0 are contiguous in memory, followed by all elements of
row 1, etc. In other terms, the array elements at (x,y)
and (x, y+1)
are adjacent in memory.
In the Fortran-style layout, array indices start at 1, and
multi-dimensional arrays are laid out in column-major format.
That is, for a two-dimensional array, all elements of
column 0 are contiguous in memory, followed by all elements of
column 1, etc. In other terms, the array elements at (x,y)
and (x+1, y)
are adjacent in memory.
Each layout style is identified at the type level by the
abstract types Bigarray.c_layout
and fortran_layout
respectively.
type'a
layout ='a Bigarray.layout
=
| |
C_layout : |
| |
Fortran_layout : |
The type 'a layout
represents one of the two supported
memory layouts: C-style if 'a
is Bigarray.c_layout
, Fortran-style
if 'a
is Bigarray.fortran_layout
.
The abstract values c_layout
and fortran_layout
represent
the two supported layouts at the level of values.
val c_layout : c_layout layout
val fortran_layout : fortran_layout layout
module Genarray:sig
..end
Generic arrays (of arbitrarily many dimensions)
module Array0:sig
..end
Zero-dimensional arrays.
module Array1:sig
..end
One-dimensional arrays.
module Array2:sig
..end
Two-dimensional arrays.
module Array3:sig
..end
Three-dimensional arrays.
val genarray_of_array0 : ('a, 'b, 'c) Array0.t -> ('a, 'b, 'c) Genarray.t
Return the generic big array corresponding to the given zero-dimensional big array.
val genarray_of_array1 : ('a, 'b, 'c) Array1.t -> ('a, 'b, 'c) Genarray.t
Return the generic big array corresponding to the given one-dimensional big array.
val genarray_of_array2 : ('a, 'b, 'c) Array2.t -> ('a, 'b, 'c) Genarray.t
Return the generic big array corresponding to the given two-dimensional big array.
val genarray_of_array3 : ('a, 'b, 'c) Array3.t -> ('a, 'b, 'c) Genarray.t
Return the generic big array corresponding to the given three-dimensional big array.
val array0_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t
Return the zero-dimensional big array corresponding to the given
generic big array. Raise Invalid_argument
if the generic big array
does not have exactly zero dimension.
val array1_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array1.t
Return the one-dimensional big array corresponding to the given generic big array.
Invalid_argument
if the generic big array
does not have exactly one dimension.val array2_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array2.t
Return the two-dimensional big array corresponding to the given generic big array.
Invalid_argument
if the generic big array
does not have exactly two dimensions.val array3_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array3.t
Return the three-dimensional big array corresponding to the given generic big array.
Invalid_argument
if the generic big array
does not have exactly three dimensions.val reshape : ('a, 'b, 'c) Genarray.t ->
int array -> ('a, 'b, 'c) Genarray.t
reshape b [|d1;...;dN|]
converts the big array b
to a
N
-dimensional array of dimensions d1
...dN
. The returned
array and the original array b
share their data
and have the same layout. For instance, assuming that b
is a one-dimensional array of dimension 12, reshape b [|3;4|]
returns a two-dimensional array b'
of dimensions 3 and 4.
If b
has C layout, the element (x,y)
of b'
corresponds
to the element x * 3 + y
of b
. If b
has Fortran layout,
the element (x,y)
of b'
corresponds to the element
x + (y - 1) * 4
of b
.
The returned big array must have exactly the same number of
elements as the original big array b
. That is, the product
of the dimensions of b
must be equal to i1 * ... * iN
.
Invalid_argument
otherwise.val reshape_0 : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t
Specialized version of Bigarray.reshape
for reshaping to
zero-dimensional arrays.
val reshape_1 : ('a, 'b, 'c) Genarray.t ->
int -> ('a, 'b, 'c) Array1.t
Specialized version of Bigarray.reshape
for reshaping to
one-dimensional arrays.
val reshape_2 : ('a, 'b, 'c) Genarray.t ->
int -> int -> ('a, 'b, 'c) Array2.t
Specialized version of Bigarray.reshape
for reshaping to
two-dimensional arrays.
val reshape_3 : ('a, 'b, 'c) Genarray.t ->
int -> int -> int -> ('a, 'b, 'c) Array3.t
Specialized version of Bigarray.reshape
for reshaping to
three-dimensional arrays.